English
金沙与研究机构
岳麓书院 经济与贸易学院 金融与统计学院 法学院 马克思主义学院 金沙科学研究院 体育学院 中国语言文学学院 外国语学院 资讯传播与影视艺术学院 数学学院 物理与微电子科学学院 化学化工学院 生物学院 机械与运载工程学院 材料科学与工程学院 电气与信息工程学院 信息科学与工程学院 建筑学院 土木工程学院 环境科学与工程学院 工商管理学院 公共管理学院 设计艺术学院 机器人学院 经济管理研究中心 化学生物传感与计量学国家重点实验室 国家高效磨削工程技术研究中心 汽车车身先进设计制造国家重点实验室 国家电能变换与控制国家工程技术研究中心 机器人视觉感知与控制技术国家工程实验室
校园生活
当前位置: 金沙电子娱乐网址 >> 校园生活 >> 学术活动 >> 学院讲座 >> 正文
统计数据 / lectrue notice
  • 排序 学院 发文量
    1 机械与运载工程学院 205
    2 物理与微电子科学学院 194
    3 岳麓书院 182
    4 化学化工学院 177
    5 材料科学与工程学院 88
    6 数学与计量经济学院 88
    7 土木工程学院 74
    8 信息科学与工程学院 68
    9 教务处 47
    10 建筑学院 40
  • 排序 学院 发文量
    11 生物学院 40
    12 经济与贸易学院 38
    13 电气与信息工程学院 36
    14 工商管理学院 28
    15 外国语学院 15
    16 法学院 15
    17 资讯传播与影视艺术学院 9
    18 研究生院 9
    19 经济与管理研究中心 6
    20 马克思主义学院 5
    21 中国语言文学学院 4
信科院:Challenges in Quantitative Imaging Biomarkers Development
学术地点 信息科学与工程学院220(原106) 主讲人 Binsheng Zhao
讲座时间 2019年10月21日 周一上午10:00

主题: Challenges in Quantitative Imaging Biomarkers Development

报告时间为:2019年10月21日 周一上午10:00

地点:信息科学与工程学院220(原106)

主讲人: Binsheng Zhao, D.Sc.,

Director, Computational Image Analysis Laboratory

Professor, Columbia University Medical Center, New York, New York, USA

网址: https://www.columbiaradiology.org/cialab

摘要:

Quantitative imaging biomarkers (QIBs) play increasingly important roles in the era of precision medicine. Radiomics, a type of QIBs, refers to the comprehensive quantification of tumor phenotypes that may be linked to genotypes/clinical outcomes by analyzing high dimensional quantitative features extracted from non-invasive routine radiographic images. A growing body of literature has shown the promise of radiomics features and models in supporting clinical decision-making in cancer detection, diagnosis, prognosis, and response prediction and assessment with its added value. However, a qualified QIB must be practically obtainable with efficient and accurate software/tools, reproducible and robust across heterogeneous imaging acquisition settings, and correlated with genotypes and/or clinical outcomes. This lecture will discuss these challenges as well as some future research directions.

主讲人概况:

Binsheng Zhao graduated from National University of Defense Technology, Changsha, with B.Sc. (1984) and M.Sc. (1987) in Electrical Engineering. In 1994, she received D.Sc. in Medical Informatics from University of Heidelberg, Germany. Dr. Zhao has worked for 20+ years at the interface of medical physics, radiology and oncology. Since early 2002, she has led a research team to develop computer-aided tumor/organ/tissue segmentation and characterization methods using CT and MRI. Her goal throughout has been to investigate new quantitative imaging biomarkers for better cancer diagnosis, response prediction and assessment and to automate and optimize these quantitative imaging biomarkers; recently, her interest has naturally led to a deep engagement with radiomics and deep machine learning. Since 2004, Dr. Zhao has been playing important roles (e.g., as steering committee member and committee member) in National Cancer Institute (NCI) and Radiological Society of North America (RSNA) initiated quantitative imaging biomarker projects that strive to aid development and validation of quantitative imaging biomarkers for improved cancer detection, diagnosis, and treatment. In 2009, her team published an unprecedented work, known as same-day repeat CT study, describing their findings of the minimally detectable tumor change by CT. The findings are essential to re-evaluating conventional response assessment methods and to establishing new volumetric response criteria.

The repeat CT dataset has been made publicly available through NCI for researchers worldwide, resulting in numerous additional publications. Dr. Zhao’s subsequent clinical study correlating early radiographic changes with EGFR mutation status in non-small cell lung cancer treated with targeted therapy, demonstrated, for the first time, improved correlations by the volumetric technique over the conventional diameter method. Her publication “Reproducibility of radiomics for deciphering tumor phenotype with imaging” kicked off recent intense discussions on the importance of developing reproducible and robust quantitative imaging biomarkers across heterogeneous imaging acquisition settings. Dr. Zhao served / is serving as PI or key investigator in numerous NIH studies. She has published over 100 peer-reviewed articles and holds 4 patents, and has successfully translated some of her team-developed algorithms from bench to bedside.

上一条:化工院:Global Simulations of Catalysis
下一条:信科院: Cooperation Preferences Aware Shapley Value: Modeling, Algorithms and Applications

湖大抖音
湖大微信
湖大微博
XML 地图 | Sitemap 地图